|
4 | 4 | //
|
5 | 5 |
|
6 | 6 | #include "PyBindImath.h"
|
| 7 | + |
| 8 | +#include <pybind11/stl.h> |
| 9 | +#include <cmath> |
| 10 | + |
| 11 | +#include <ImathColorAlgo.h> |
7 | 12 | #include <ImathFun.h>
|
| 13 | +#include <ImathMatrixAlgo.h> |
| 14 | +#include <ImathVec.h> |
8 | 15 |
|
9 | 16 | namespace py = pybind11;
|
10 | 17 |
|
11 | 18 | namespace {
|
12 | 19 |
|
| 20 | +static inline float |
| 21 | +fun_bias(float x, float b) |
| 22 | +{ |
| 23 | + if (b != 0.5f) |
| 24 | + { |
| 25 | + static const float inverse_log_half = 1.0f / std::log(0.5f); |
| 26 | + const float biasPow = std::log(b) * inverse_log_half; |
| 27 | + |
| 28 | + return std::pow(x, biasPow); |
| 29 | + } |
| 30 | + |
| 31 | + return x; |
| 32 | +} |
| 33 | + |
| 34 | +static inline float |
| 35 | +fun_gain(float x, float g) |
| 36 | +{ |
| 37 | + if (x < 0.5f) |
| 38 | + return 0.5f * fun_bias(2.0f * x, 1.0f - g); |
| 39 | + else |
| 40 | + return 1.0f - 0.5f * fun_bias(2.0f - 2.0f * x, 1.0f - g); |
| 41 | +} |
| 42 | + |
| 43 | +template <class T> |
| 44 | +static IMATH_NAMESPACE::Vec3<T> |
| 45 | +fun_rotationXYZWithUpDir( |
| 46 | + const IMATH_NAMESPACE::Vec3<T> &from, |
| 47 | + const IMATH_NAMESPACE::Vec3<T> &to, |
| 48 | + const IMATH_NAMESPACE::Vec3<T> &up) |
| 49 | +{ |
| 50 | + IMATH_NAMESPACE::Vec3<T> retval; |
| 51 | + IMATH_NAMESPACE::extractEulerXYZ(IMATH_NAMESPACE::rotationMatrixWithUpDir(from, to, up), retval); |
| 52 | + |
| 53 | + return retval; |
| 54 | +} |
| 55 | + |
| 56 | +template <class T> |
| 57 | +static inline IMATH_NAMESPACE::Vec3<T> |
| 58 | +fun_rgb2hsv(const IMATH_NAMESPACE::Vec3<T> &rgb) |
| 59 | +{ |
| 60 | + return IMATH_NAMESPACE::rgb2hsv(rgb); |
| 61 | +} |
| 62 | + |
| 63 | +template <class T> |
| 64 | +static inline IMATH_NAMESPACE::Vec3<T> |
| 65 | +fun_hsv2rgb(const IMATH_NAMESPACE::Vec3<T> &rgb) |
| 66 | +{ |
| 67 | + return IMATH_NAMESPACE::hsv2rgb(rgb); |
| 68 | +} |
| 69 | + |
13 | 70 | template <class T>
|
| 71 | +static inline T |
| 72 | +fun_atan2(T y, T x) { |
| 73 | + return std::atan2(y, x); |
| 74 | +} |
| 75 | + |
| 76 | +template <class T> |
| 77 | +static inline T |
| 78 | +fun_pow(T base, T exp) { |
| 79 | + return std::pow(base, exp); |
| 80 | +} |
| 81 | + |
14 | 82 | void
|
15 |
| -register_imath_funT(py::module& m) |
| 83 | +register_fun(py::module& m) |
16 | 84 | {
|
17 |
| - m.def("cmp", IMATH_NAMESPACE::cmp<T>); |
18 |
| - m.def("cmpt", IMATH_NAMESPACE::cmpt<T>); |
19 |
| - m.def("iszero", IMATH_NAMESPACE::iszero<T>); |
20 |
| - m.def("equal", IMATH_NAMESPACE::equal<T, T, T>); |
| 85 | + m.def( |
| 86 | + "abs", |
| 87 | + IMATH_NAMESPACE::abs<int>, |
| 88 | + py::arg("value"), |
| 89 | + "Return the absolute value of the argument."); |
| 90 | + m.def( |
| 91 | + "sign", |
| 92 | + IMATH_NAMESPACE::sign<int>, |
| 93 | + py::arg("value"), |
| 94 | + "Return \"1\" or \"-1\" based on the sign of the argument."); |
| 95 | + m.def( |
| 96 | + "clamp", |
| 97 | + IMATH_NAMESPACE::clamp<int>, |
| 98 | + py::arg("value"), |
| 99 | + py::arg("low"), |
| 100 | + py::arg("high"), |
| 101 | + "Return the first argument clamped using the second and third arguments as a range."); |
| 102 | + m.def( |
| 103 | + "divs", |
| 104 | + IMATH_NAMESPACE::divs, |
| 105 | + py::arg("x"), |
| 106 | + py::arg("y"), |
| 107 | + "Return x/y where the remainder has the same sign as x:\n" |
| 108 | + " divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y))\n"); |
| 109 | + m.def( |
| 110 | + "mods", |
| 111 | + IMATH_NAMESPACE::mods, |
| 112 | + py::arg("x"), |
| 113 | + py::arg("y"), |
| 114 | + "Return x%y where the remainder has the same sign as x:\n" |
| 115 | + " mods(x,y) == x - y * divs(x,y)\n"); |
| 116 | + m.def( |
| 117 | + "divp", |
| 118 | + IMATH_NAMESPACE::divp, |
| 119 | + py::arg("x"), |
| 120 | + py::arg("y"), |
| 121 | + "Return x/y where the remainder is always positive:\n" |
| 122 | + " divp(x,y) == floor (double(x) / double (y))\n"); |
| 123 | + m.def( |
| 124 | + "modp", |
| 125 | + IMATH_NAMESPACE::modp, |
| 126 | + py::arg("x"), |
| 127 | + py::arg("y"), |
| 128 | + "Return x%y where the remainder is always positive:\n" |
| 129 | + " modp(x,y) == x - y * divp(x,y)\n"); |
| 130 | + m.def( |
| 131 | + "succf", |
| 132 | + IMATH_NAMESPACE::succf, |
| 133 | + py::arg("f")); |
| 134 | + m.def( |
| 135 | + "predf", |
| 136 | + IMATH_NAMESPACE::predf, |
| 137 | + py::arg("f")); |
| 138 | + m.def( |
| 139 | + "succd", |
| 140 | + IMATH_NAMESPACE::succd, |
| 141 | + py::arg("d")); |
| 142 | + m.def( |
| 143 | + "predd", |
| 144 | + IMATH_NAMESPACE::predd, |
| 145 | + py::arg("d")); |
| 146 | + m.def( |
| 147 | + "finitef", |
| 148 | + IMATH_NAMESPACE::finitef, |
| 149 | + py::arg("f")); |
| 150 | + m.def( |
| 151 | + "finited", |
| 152 | + IMATH_NAMESPACE::finited, |
| 153 | + py::arg("d")); |
| 154 | + m.def( |
| 155 | + "bias", |
| 156 | + fun_bias, |
| 157 | + py::arg("x"), |
| 158 | + py::arg("b"), |
| 159 | + "Return a gamma correction that remaps the unit interval such that \"bias(0.5, b) = b\"."); |
| 160 | + m.def( |
| 161 | + "gain", |
| 162 | + fun_gain, |
| 163 | + py::arg("x"), |
| 164 | + py::arg("g"), |
| 165 | + "Return a gamma correction that remaps the unit interval with the property that \"gain(0.5, g) = 0.5\"." |
| 166 | + "\nThe \"gain()\" function can be thought of as two scaled bias curves forming an \"S\" shape in the unit " |
| 167 | + "interval."); |
| 168 | + m.def( |
| 169 | + "rotationXYZWithUpDir", |
| 170 | + fun_rotationXYZWithUpDir<float>, |
| 171 | + py::arg("fromDir"), |
| 172 | + py::arg("toDir"), |
| 173 | + py::arg("upDir"), |
| 174 | + "Return the XYZ rotation vector that rotates the first vector argument " |
| 175 | + "to the second vector argument, using the third argument as the up-vector."); |
| 176 | + |
| 177 | + m.def( |
| 178 | + "log", |
| 179 | + [](double value) { return log(value); }, |
| 180 | + py::arg("value"), |
| 181 | + "Return the natural logarithm of the argument."); |
| 182 | + m.def( |
| 183 | + "log10", |
| 184 | + [](double value) { return log10(value); }, |
| 185 | + py::arg("value"), |
| 186 | + "Return the base 10 logarithm of the argument."); |
| 187 | + m.def( |
| 188 | + "sin", |
| 189 | + [](double theta) { return sin(theta); }, |
| 190 | + py::arg("theta"), |
| 191 | + "Return the sine of the argument."); |
| 192 | + m.def( |
| 193 | + "cos", |
| 194 | + [](double theta) { return cos(theta); }, |
| 195 | + py::arg("theta"), |
| 196 | + "Return the cosine of the argument."); |
| 197 | + m.def( |
| 198 | + "tan", |
| 199 | + [](double theta) { return std::tan(theta); }, |
| 200 | + py::arg("theta"), |
| 201 | + "Return the tangent of the argument."); |
| 202 | + m.def( |
| 203 | + "asin", |
| 204 | + [](double x) { return std::asin(x); }, |
| 205 | + py::arg("x"), |
| 206 | + "Return the arcsine of the argument."); |
| 207 | + m.def( |
| 208 | + "acos", |
| 209 | + [](double x) { return std::acos(x); }, |
| 210 | + py::arg("x"), |
| 211 | + "Return the arcosine of the argument."); |
| 212 | + m.def( |
| 213 | + "atan", |
| 214 | + [](double x) { return std::atan(x); }, |
| 215 | + py::arg("x"), |
| 216 | + "Return the arctangent of the argument."); |
| 217 | + m.def( |
| 218 | + "sqrt", |
| 219 | + [](double x) { return std::sqrt(x); }, |
| 220 | + py::arg("x"), |
| 221 | + "Return the square root of the argument."); |
| 222 | + m.def( |
| 223 | + "exp", |
| 224 | + [](double x) { return std::exp(x); }, |
| 225 | + py::arg("x"), |
| 226 | + "Return the exponential of the argument."); |
| 227 | + m.def( |
| 228 | + "sinh", |
| 229 | + [](double x) { return std::sinh(x); }, |
| 230 | + py::arg("x"), |
| 231 | + "Return the hyperbolic sine of the argument."); |
| 232 | + m.def( |
| 233 | + "cosh", |
| 234 | + [](double x) { return std::cosh(x); }, |
| 235 | + py::arg("x"), |
| 236 | + "Return the hyperbolic cosine of the argument."); |
21 | 237 |
|
22 | 238 | }
|
23 | 239 |
|
24 |
| -} // namespace |
| 240 | +template <class T> |
| 241 | +void |
| 242 | +register_fun_fp_T(py::module& m) |
| 243 | +{ |
| 244 | + m.def( |
| 245 | + "abs", |
| 246 | + IMATH_NAMESPACE::abs<T>, |
| 247 | + py::arg("value"), |
| 248 | + "Return the absolute value of the argument."); |
| 249 | + m.def( |
| 250 | + "sign", |
| 251 | + IMATH_NAMESPACE::sign<T>, |
| 252 | + py::arg("value"), |
| 253 | + "Return \"1\" or \"-1\" based on the sign of the argument."); |
| 254 | + m.def( |
| 255 | + "lerp", |
| 256 | + IMATH_NAMESPACE::lerp<T, T>, |
| 257 | + py::arg("a"), |
| 258 | + py::arg("b"), |
| 259 | + py::arg("t"), |
| 260 | + "Return the linear interpolation of the first and second arguments, " |
| 261 | + "using the third argument as the parameter."); |
| 262 | + m.def( |
| 263 | + "ulerp", |
| 264 | + IMATH_NAMESPACE::ulerp<T, T>, |
| 265 | + py::arg("a"), |
| 266 | + py::arg("b"), |
| 267 | + py::arg("t")); |
| 268 | + m.def( |
| 269 | + "lerpfactor", |
| 270 | + IMATH_NAMESPACE::lerpfactor<T>, |
| 271 | + py::arg("m"), |
| 272 | + py::arg("a"), |
| 273 | + py::arg("b"), |
| 274 | + "Return how far m is between a and b, that is return t such that\n" |
| 275 | + "if:\n" |
| 276 | + " t = lerpfactor(m, a, b);\n" |
| 277 | + "then:\n" |
| 278 | + " m = lerp(a, b, t);\n" |
| 279 | + "\n" |
| 280 | + "If a==b, return 0.\n"); |
| 281 | + m.def( |
| 282 | + "clamp", |
| 283 | + IMATH_NAMESPACE::clamp<T>, |
| 284 | + py::arg("value"), |
| 285 | + py::arg("low"), |
| 286 | + py::arg("high"), |
| 287 | + "Return the first argument clamped using the second and third arguments as a range."); |
| 288 | + m.def( |
| 289 | + "floor", |
| 290 | + IMATH_NAMESPACE::floor<T>, |
| 291 | + py::arg("value"), |
| 292 | + "Return the closest integer smaller or equal to the argument."); |
| 293 | + m.def( |
| 294 | + "ceil", |
| 295 | + IMATH_NAMESPACE::ceil<T>, |
| 296 | + py::arg("value"), |
| 297 | + "Return the closest integer greater or equal to the argument."); |
| 298 | + m.def( |
| 299 | + "trunc", |
| 300 | + IMATH_NAMESPACE::trunc<T>, |
| 301 | + py::arg("value"), |
| 302 | + "Return the closest integer with a magnitude smaller or equal to the argument."); |
| 303 | + m.def( |
| 304 | + "rgb2hsv", |
| 305 | + fun_rgb2hsv<T>, |
| 306 | + py::arg("rgb"), |
| 307 | + "Return a HSV representation of the RGB argument."); |
| 308 | + m.def( |
| 309 | + "hsv2rgb", |
| 310 | + fun_hsv2rgb<T>, |
| 311 | + py::arg("hsv"), |
| 312 | + "Return a RGB representation of the HSV argument."); |
| 313 | + m.def( |
| 314 | + "cmp", |
| 315 | + IMATH_NAMESPACE::cmp<T>, |
| 316 | + py::arg("a"), |
| 317 | + py::arg("b")); |
| 318 | + m.def( |
| 319 | + "cmpt", |
| 320 | + IMATH_NAMESPACE::cmpt<T>, |
| 321 | + py::arg("a"), |
| 322 | + py::arg("b"), |
| 323 | + py::arg("t")); |
| 324 | + m.def( |
| 325 | + "iszero", |
| 326 | + IMATH_NAMESPACE::iszero<T>, |
| 327 | + py::arg("a"), |
| 328 | + py::arg("t")); |
| 329 | + m.def( |
| 330 | + "equal", |
| 331 | + IMATH_NAMESPACE::equal<T, T, T>, |
| 332 | + py::arg("a"), |
| 333 | + py::arg("b"), |
| 334 | + py::arg("t")); |
| 335 | + m.def( |
| 336 | + "atan2", |
| 337 | + fun_atan2<T>, |
| 338 | + py::arg("y"), |
| 339 | + py::arg("x"), |
| 340 | + "Return the arctangent of the first argument over the second argument."); |
| 341 | + m.def( |
| 342 | + "pow", |
| 343 | + fun_pow<T>, |
| 344 | + py::arg("x"), |
| 345 | + py::arg("y"), |
| 346 | + "Return the first argument raised to the power of the second argument."); |
| 347 | +} |
| 348 | + |
| 349 | +} // namespace |
25 | 350 |
|
26 | 351 | namespace PyBindImath {
|
27 | 352 |
|
28 | 353 | void
|
29 | 354 | register_imath_fun(py::module& m)
|
30 | 355 | {
|
31 |
| - register_imath_funT<int>(m); |
32 |
| - register_imath_funT<float>(m); |
33 |
| - register_imath_funT<double>(m); |
| 356 | + // Bindings for functions using explicit argument(s) and return types. |
| 357 | + register_fun(m); |
| 358 | + |
| 359 | + // Bindings for functions using floating point types. Only bind |
| 360 | + // to double to prevent loss of precision in inadvertent casting |
| 361 | + // to float. |
| 362 | + // |
| 363 | + register_fun_fp_T<float>(m); |
| 364 | + register_fun_fp_T<double>(m); |
34 | 365 | }
|
35 | 366 |
|
36 | 367 | } // namespace PyBindImath
|
37 |
| - |
|
0 commit comments