|
| 1 | +module t |
| 2 | + |
| 3 | +# TODO: The tree needs to remove Nothing's to be efficient. |
| 4 | +# * Do not pad to power of two. |
| 5 | +# * Every time an iterator is exhausted, re-build the tree. |
| 6 | + |
| 7 | +struct LoserTree{T, I, S} |
| 8 | + # The loser tree. Index 1 is winner, rest is the loser tree. |
| 9 | + # Except node 1, node x' parents is 2x - 1 and 2x. |
| 10 | + # Padded with `nothing` to be a power-of-two long |
| 11 | + |
| 12 | + # TODO: The vector lengths never changes, and it would be nice if they were |
| 13 | + # constant propagated. So, use Memory{T} when it's supported by Julia LTS |
| 14 | + tree::Vector{Union{Tuple{Int, T}, Nothing}} |
| 15 | + iters::Vector{I} |
| 16 | + states::Vector{S} |
| 17 | +end |
| 18 | + |
| 19 | +function nextpow_2(x) |
| 20 | + B = 8 * sizeof(x) |
| 21 | + s = B - leading_zeros(x - 1) |
| 22 | + return one(x) << (s & (B - 1)) |
| 23 | +end |
| 24 | + |
| 25 | +function LoserTree(it) |
| 26 | + iters = collect(it) |
| 27 | + I = eltype(iters) |
| 28 | + T = eltype(I) |
| 29 | + tree = fill!(Vector{Union{Tuple{Int, T}, Nothing}}(undef, nextpow_2(length(iters))), nothing) |
| 30 | + states = init_tree!(tree, iters) |
| 31 | + return LoserTree{T, I, eltype(states)}(tree, iters, states) |
| 32 | +end |
| 33 | + |
| 34 | +function init_tree!(tree::Vector{Union{Nothing, Tuple{Int, T}}}, iters::Vector)::Vector where {T} |
| 35 | + isempty(iters) && return Vector{Union{}} |
| 36 | + (val, states) = _init_tree(tree, 2, nothing, iters) |
| 37 | + tree[1] = val |
| 38 | + return if states === nothing |
| 39 | + Vector{Union{}}(undef, length(iters)) |
| 40 | + else |
| 41 | + states |
| 42 | + end |
| 43 | +end |
| 44 | + |
| 45 | +function _init_tree(tree, i, states, iters)::Tuple{Union{Nothing, Tuple{Int, Any}}, Union{Nothing, Vector}} |
| 46 | + if i > length(tree) |
| 47 | + iter_i = i - length(tree) |
| 48 | + return if iter_i > length(iters) |
| 49 | + (nothing, states) |
| 50 | + else |
| 51 | + iter = iters[iter_i] |
| 52 | + itval = iterate(iter) |
| 53 | + if itval === nothing |
| 54 | + (nothing, states) |
| 55 | + else |
| 56 | + (val, state) = itval |
| 57 | + if states === nothing |
| 58 | + states = Vector{typeof(state)}(undef, length(iters)) |
| 59 | + end |
| 60 | + states[iter_i] = state |
| 61 | + ((iter_i, val), states) |
| 62 | + end |
| 63 | + end |
| 64 | + else |
| 65 | + (x1, states) = _init_tree(tree, 2i - 1, states, iters) |
| 66 | + (x2, states) = _init_tree(tree, 2i, states, iters) |
| 67 | + (winner, loser) = get_winner_loser(x1, x2) |
| 68 | + tree[i] = loser |
| 69 | + return (winner, states) |
| 70 | + end |
| 71 | +end |
| 72 | + |
| 73 | +function get_winner_loser(a::Union{Nothing, Tuple{Int, Any}}, b::Union{Nothing, Tuple{Int, Any}}) |
| 74 | + return if a === nothing |
| 75 | + (b, a) |
| 76 | + elseif b === nothing |
| 77 | + (a, b) |
| 78 | + elseif last(a) < last(b) |
| 79 | + (a, b) |
| 80 | + else |
| 81 | + (b, a) |
| 82 | + end |
| 83 | +end |
| 84 | + |
| 85 | +@inline function bubble_up!(tree::Vector{Union{Nothing, Tuple{Int, T}}}, winner::Union{Nothing, Tuple{Int, T}}, pi::Int) where {T} |
| 86 | + n_iters = trailing_zeros(length(tree)) |
| 87 | + i = 0 |
| 88 | + @inbounds while i < n_iters |
| 89 | + parent = tree[pi] |
| 90 | + (winner, loser) = get_winner_loser(winner, parent) |
| 91 | + tree[pi] = loser |
| 92 | + pi = (pi + 1) >>> 1 |
| 93 | + i += 1 |
| 94 | + end |
| 95 | + @inbounds tree[1] = winner |
| 96 | + return nothing |
| 97 | +end |
| 98 | + |
| 99 | +Base.IteratorSize(::Type{<:LoserTree}) = Base.SizeUnknown() |
| 100 | +Base.eltype(::Type{<:LoserTree{T}}) where {T} = Tuple{Int, T} |
| 101 | + |
| 102 | +function Base.iterate(x::LoserTree, _state::Nothing = nothing) |
| 103 | + result = @inbounds x.tree[1] |
| 104 | + result === nothing && return result |
| 105 | + (i, element) = result |
| 106 | + state = @inbounds x.states[i] |
| 107 | + itval = iterate(@inbounds(x.iters[i]), state) |
| 108 | + new_val = if itval === nothing |
| 109 | + nothing |
| 110 | + else |
| 111 | + (new_element, new_state) = itval |
| 112 | + @inbounds x.states[i] = new_state |
| 113 | + (i, new_element) |
| 114 | + end |
| 115 | + pi = (i + nextpow_2(length(x.iters)) + 1) >>> 1 |
| 116 | + bubble_up!(x.tree, new_val, pi) |
| 117 | + return ((i, element), nothing) |
| 118 | +end |
| 119 | + |
| 120 | +end # module |
0 commit comments