@@ -364,11 +364,11 @@ def summary(self) -> Summary:
364
364
smry .tables .append (table )
365
365
366
366
param_data = c_ [
367
- self .params .values [:, None ],
368
- self .std_errors .values [:, None ],
369
- self .tstats .values [:, None ],
370
- self .pvalues .values [:, None ],
371
- self .conf_int (),
367
+ self .params .to_numpy () [:, None ],
368
+ self .std_errors .to_numpy () [:, None ],
369
+ self .tstats .to_numpy () [:, None ],
370
+ self .pvalues .to_numpy () [:, None ],
371
+ self .conf_int (). to_numpy () ,
372
372
]
373
373
data = []
374
374
for row in param_data :
@@ -722,11 +722,11 @@ def diagnostics(self) -> DataFrame:
722
722
for col in endog .pandas :
723
723
# TODO: BUG in pandas-stube
724
724
# https://github.com/pandas-dev/pandas-stubs/issues/97
725
- y = w * endog .pandas [[col ]].values
725
+ y = w * endog .pandas [[col ]].to_numpy ()
726
726
ey = annihilate (y , x )
727
727
partial = _OLS (ey , ez ).fit (cov_type = self ._cov_type , ** self ._cov_config )
728
728
full = individual_results [str (col )]
729
- params = full .params .values [- nz :]
729
+ params = full .params .to_numpy () [- nz :]
730
730
params = params [:, None ]
731
731
c = asarray (full .cov )[- nz :, - nz :]
732
732
stat = params .T @ inv (c ) @ params
@@ -845,7 +845,7 @@ def summary(self) -> Summary:
845
845
params = []
846
846
for var in header :
847
847
res = self .individual [var ]
848
- v = c_ [res .params .values , res .tstats .values ]
848
+ v = c_ [res .params .to_numpy () , res .tstats .to_numpy () ]
849
849
params .append (v .ravel ())
850
850
params_arr = array (params )
851
851
params_fmt = [[_str (val ) for val in row ] for row in params_arr .T ]
@@ -970,7 +970,7 @@ def sargan(self) -> InvalidTestStatistic | WaldTestStatistic:
970
970
name = name ,
971
971
)
972
972
973
- eps = self .resids .values [:, None ]
973
+ eps = self .resids .to_numpy () [:, None ]
974
974
u = annihilate (eps , self .model ._z )
975
975
stat = nobs * (1 - (u .T @ u ) / (eps .T @ eps )).squeeze ()
976
976
null = "The model is not overidentified."
@@ -1033,17 +1033,17 @@ def _endogeneity_setup(
1033
1033
raise TypeError ("variables must be a str or a list of str." )
1034
1034
1035
1035
nobs = self .model .dependent .shape [0 ]
1036
- e2 = asarray (self .resids .values )
1036
+ e2 = asarray (self .resids .to_numpy () )
1037
1037
nendog , nexog = self .model .endog .shape [1 ], self .model .exog .shape [1 ]
1038
1038
if variables is None :
1039
1039
assumed_exog = self .model .endog .ndarray
1040
1040
aug_exog = c_ [self .model .exog .ndarray , assumed_exog ]
1041
1041
still_endog = empty ((nobs , 0 ))
1042
1042
else :
1043
1043
assert isinstance (variables , list )
1044
- assumed_exog = self .model .endog .pandas [variables ].values
1044
+ assumed_exog = self .model .endog .pandas [variables ].to_numpy ()
1045
1045
ex = [c for c in self .model .endog .cols if c not in variables ]
1046
- still_endog = self .model .endog .pandas [ex ].values
1046
+ still_endog = self .model .endog .pandas [ex ].to_numpy ()
1047
1047
aug_exog = c_ [self .model .exog .ndarray , assumed_exog ]
1048
1048
ntested = assumed_exog .shape [1 ]
1049
1049
@@ -1052,7 +1052,7 @@ def _endogeneity_setup(
1052
1052
mod = IV2SLS (
1053
1053
self .model .dependent , aug_exog , still_endog , self .model .instruments
1054
1054
)
1055
- e0 = mod .fit ().resids .values [:, None ]
1055
+ e0 = mod .fit ().resids .to_numpy () [:, None ]
1056
1056
1057
1057
z2 = c_ [self .model .exog .ndarray , self .model .instruments .ndarray ]
1058
1058
z1 = c_ [z2 , assumed_exog ]
@@ -1257,8 +1257,8 @@ def wooldridge_regression(self) -> WaldTestStatistic:
1257
1257
mod = _OLS (self .model .dependent , augx )
1258
1258
res = mod .fit (cov_type = self .cov_type , ** self .cov_config )
1259
1259
norig = self .model ._x .shape [1 ]
1260
- test_params = asarray (res .params .values [norig :], dtype = float )
1261
- test_cov = res .cov .values [norig :, norig :]
1260
+ test_params = asarray (res .params .to_numpy () [norig :], dtype = float )
1261
+ test_cov = res .cov .to_numpy () [norig :, norig :]
1262
1262
stat = test_params .T @ inv (test_cov ) @ test_params
1263
1263
df = len (test_params )
1264
1264
null = "Endogenous variables are exogenous"
@@ -1310,7 +1310,7 @@ def wooldridge_overid(self) -> InvalidTestStatistic | WaldTestStatistic:
1310
1310
endog_hat = proj (endog .ndarray , c_ [exog .ndarray , instruments .ndarray ])
1311
1311
q = instruments .ndarray [:, : (ninstr - nendog )]
1312
1312
q_res = annihilate (q , c_ [self .model .exog .ndarray , endog_hat ])
1313
- test_functions = q_res * self .resids .values [:, None ]
1313
+ test_functions = q_res * self .resids .to_numpy () [:, None ]
1314
1314
res = _OLS (ones ((nobs , 1 )), test_functions ).fit (cov_type = "unadjusted" )
1315
1315
1316
1316
stat = res .nobs * res .rsquared
@@ -1520,9 +1520,9 @@ def c_stat(self, variables: list[str] | str | None = None) -> WaldTestStatistic:
1520
1520
variable_lst = [variables ]
1521
1521
else :
1522
1522
raise TypeError ("variables must be a str or a list of str." )
1523
- exog_e = c_ [exog .ndarray , endog .pandas [variable_lst ].values ]
1523
+ exog_e = c_ [exog .ndarray , endog .pandas [variable_lst ].to_numpy () ]
1524
1524
ex = [c for c in endog .pandas if c not in variable_lst ]
1525
- endog_e = endog .pandas [ex ].values
1525
+ endog_e = endog .pandas [ex ].to_numpy ()
1526
1526
null = "Variables {} are exogenous" .format (", " .join (variable_lst ))
1527
1527
from linearmodels .iv .model import IVGMM , IVGMMCUE
1528
1528
@@ -1637,7 +1637,7 @@ def summary(self) -> Summary:
1637
1637
],
1638
1638
axis = 1 ,
1639
1639
)
1640
- vals_list = [[i for i in v ] for v in vals .T .values ]
1640
+ vals_list = [[i for i in v ] for v in vals .T .to_numpy () ]
1641
1641
vals_list [2 ] = [str (v ) for v in vals_list [2 ]]
1642
1642
for i in range (4 , len (vals_list )):
1643
1643
vals_list [i ] = [_str (v ) for v in vals_list [i ]]
@@ -1650,11 +1650,11 @@ def summary(self) -> Summary:
1650
1650
1651
1651
for i in range (len (params )):
1652
1652
formatted_and_starred = []
1653
- for v , pv in zip (params .values [i ], pvalues [i ]):
1653
+ for v , pv in zip (params .to_numpy () [i ], pvalues [i ]):
1654
1654
formatted_and_starred .append (add_star (_str (v ), pv , self ._stars ))
1655
1655
params_fmt .append (formatted_and_starred )
1656
1656
precision_fmt = []
1657
- for v in precision .values [i ]:
1657
+ for v in precision .to_numpy () [i ]:
1658
1658
v_str = _str (v )
1659
1659
v_str = f"({ v_str } )" if v_str .strip () else v_str
1660
1660
precision_fmt .append (v_str )
0 commit comments