This project implements a GitOps-driven workflow for building, training, and deploying machine learning models that predict the efficiency of manufacturing machines using sensor data. It integrates automation, CI/CD, and containerization principles tailored for Industry 4.0 applications.
- Predict machine efficiency (e.g., OEE – Overall Equipment Effectiveness)
- Analyze real-time sensor data: temperature, vibration, energy use, uptime
- Automate training and deployment via Jenkins and GitOps principles
- Support containerized deployment to cloud or edge via Docker/Kubernetes
- ML & Data:
pandas
,scikit-learn
,xgboost
,numpy
- API:
Flask
orFastAPI
- Visualization:
matplotlib
,plotly
- DevOps:
Docker
,Jenkins
,Kubernetes
- GitOps tools (optional):
ArgoCD
,Flux
-- graph TD GitHub -->|Code push| Jenkins Jenkins -->|Build/Test| Docker Docker -->|Push image| DockerHub DockerHub -->|Trigger| Kubernetes Kubernetes -->|Run|[ML API Service]