Skip to content

This repository hosts a Jupyter notebook for loading, preprocessing, and analyzing the BigP3BCI dataset, focusing on P300 oddball event‑related potentials (ERPs) in an EEG brain–computer interface (BCI) paradigm.

License

Notifications You must be signed in to change notification settings

andymgibson/COGS_189_Brain_Computer_Interfaces

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

BIGP3B Dataset EEG BCI Analysis

This repository hosts a Jupyter notebook for loading, preprocessing, and analyzing the BigP3BCI dataset, focusing on P300 oddball event‑related potentials (ERPs) in an EEG brain–computer interface (BCI) paradigm.

Contents

  • BIGP3BDataset_EEG_BCI.ipynb – The main analysis notebook:

    • Reading and filtering raw EDF files
    • Channel renaming and montage setting
    • Event detection and onset index computation
    • Epoching target vs. non‑target trials
    • ERP averaging and comparison at midline electrodes (Fz, Cz, Pz)
    • Feature extraction via windowed means and classifier pipeline

Prerequisites

  • Python ≥ 3.10
  • Conda for environment management

Installation

  1. Clone this repository:

    git clone https://github.com/yourusername/BIGP3B_EEG_BCI.git
    cd BIGP3B_EEG_BCI
  2. Create and activate a Conda environment:

    conda create -n bci_env python=3.10 -y
    conda activate bci_env
  3. Install required packages:

    conda install -c conda-forge mne numpy scipy pandas matplotlib jupyter -y

Usage

  1. Download the BigP3BCI data (e.g. from PhysioNet):

    # example: place `C_04_SE001_CB_Train02.edf` and related files in `data/`
  2. Launch Jupyter Lab or Notebook:

    jupyter lab
  3. Open and run BIGP3BDataset_EEG_BCI.ipynb:

    • Step through cells to preprocess, epoch, and visualize P300 ERPs.
    • Modify parameters (e.g., epoch window, channels) as needed.

Data Description

The BigP3BCI dataset contains single‑trial EEG recordings during an auditory oddball task. Key channels:

  • StimulusBegin – Square pulse indicating flash onset
  • StimulusType – Code for target vs. non‑target
  • PhaseInSequence – Position in the stimulus sequence

Refer to the dataset documentation for full details: https://physionet.org/content/bigp3bci/1.0.0/

License

This project is licensed under the MIT License. See LICENSE for details.


© 2025 Andy Gibson

About

This repository hosts a Jupyter notebook for loading, preprocessing, and analyzing the BigP3BCI dataset, focusing on P300 oddball event‑related potentials (ERPs) in an EEG brain–computer interface (BCI) paradigm.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published