Skip to content

Reinforcement Learning for Autonomous Satellite Constellation Scheduling and Earth Observation Optimization

License

Notifications You must be signed in to change notification settings

debanjan06/SatelliteRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

SatelliteRL: Intelligent Satellite Constellation Management

License: MIT Python 3.8+ Status: In Development

Reinforcement Learning for Autonomous Satellite Constellation Scheduling and Earth Observation Optimization

πŸš€ Project Overview

SatelliteRL addresses the complex challenge of optimizing satellite constellation operations for Earth observation missions. Using advanced reinforcement learning techniques, this system learns to schedule imaging requests, manage power resources, and coordinate multiple satellites to maximize scientific and commercial value.

Key Innovation: Multi-agent RL approach that treats each satellite as an autonomous agent while maintaining constellation-level coordination through shared objectives and communication protocols.

🎯 Problem Statement

Modern Earth observation requires coordinating dozens of satellites with:

  • Competing Priorities: Emergency response vs. routine monitoring vs. commercial requests
  • Resource Constraints: Limited power, storage, and communication windows
  • Dynamic Environment: Weather conditions, orbital mechanics, equipment failures
  • Multi-Objective Optimization: Scientific value, cost efficiency, customer satisfaction

✨ Features

Current Implementation

  • Basic orbital simulation environment
  • Satellite dynamics modeling
  • Simple reward function framework
  • Ground station visibility calculations
  • Weather integration (cloud cover)

In Progress

  • Multi-agent DQN implementation
  • Experience replay optimization
  • Real TLE data integration
  • Advanced reward shaping

Planned

  • Hierarchical RL for complex action spaces
  • Real-time visualization dashboard
  • Industry benchmark comparisons
  • Multi-satellite coordination protocols

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Environment   β”‚    β”‚   RL Agents     β”‚    β”‚  Coordinator    β”‚
β”‚                 β”‚    β”‚                 β”‚    β”‚                 β”‚
β”‚  Orbital Sim    │◄──►│  Satellite 1    │◄──►│  Task Scheduler β”‚
β”‚  Weather Data   β”‚    β”‚  Satellite 2    β”‚    β”‚  Resource Mgmt  β”‚
β”‚  Ground Stationsβ”‚    β”‚      ...        β”‚    β”‚  Comm Protocol  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“Š Performance Metrics

Metric Target Current Status
Coverage Efficiency >85% Baseline: 65%
Power Utilization <5% emergency events In development
Response Time <2 hours for urgent requests Testing phase
Revenue Optimization 15-20% improvement Pending evaluation

πŸ› οΈ Technology Stack

  • Core RL: PyTorch, Stable-Baselines3, OpenAI Gym
  • Orbital Mechanics: Skyfield, Poliastro, SGP4
  • Data Processing: NumPy, Pandas, Scikit-learn
  • Visualization: Plotly, Dash, Matplotlib
  • APIs: OpenWeatherMap, Space-Track.org

πŸ“ˆ Development Timeline

Phase 1: Foundation (Weeks 1-3) βœ…

  • Repository setup and documentation
  • Basic simulation environment
  • Orbital mechanics integration
  • Initial reward function

Phase 2: RL Core (Weeks 4-6) πŸ”„

  • DQN agent implementation
  • Multi-agent coordination
  • Experience replay optimization
  • Training pipeline

Phase 3: Advanced Features (Weeks 7-9) πŸ“…

  • Real-world data integration
  • Hierarchical action spaces
  • Performance optimization
  • Robustness testing

Phase 4: Deployment & Evaluation (Weeks 10-12) πŸ“…

  • Interactive dashboard
  • Industry benchmarking
  • Documentation and presentation
  • Open-source release

πŸš€ Quick Start

# Clone repository
git clone https://github.com/debanjan06/SatelliteRL.git
cd SatelliteRL

# Install dependencies
pip install -r requirements.txt

# Run basic simulation
python src/simulation/run_basic_sim.py

# Start training (coming soon)
python src/training/train_dqn.py --config configs/default.yaml

πŸ“š Documentation

🀝 Industry Relevance

This project addresses real challenges faced by:

  • Satellite Operators: Planet Labs, Maxar Technologies, Capella Space
  • Space Agencies: NASA, ESA, ISRO, SpaceX
  • Commercial Users: Agriculture, disaster response, urban planning
  • Research Institutions: Earth observation and climate research

πŸ“„ Academic Contributions

  • Novel multi-agent RL formulation for satellite scheduling
  • Hierarchical action space design for complex orbital maneuvers
  • Real-time adaptation to dynamic weather and operational constraints
  • Open-source framework for satellite constellation research

πŸ‘¨β€πŸ’» Author

Debanjan Shil
M.Tech Data Science Student
Roll No: BL.SC.P2DSC24032
GitHub: @debanjan06

πŸ“ž Contact & Collaboration

Interested in collaboration or have questions?

  • πŸ“§ Open an issue for technical discussions
  • πŸ”— Connect on LinkedIn for industry opportunities
  • πŸ“ Check out my other projects on GitHub

πŸ“Š Project Status

Progress: β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘ 40% Complete
Last Update: June 2025
Next Milestone: Multi-agent DQN implementation

🌟 Star History

Star History Chart


"Optimizing Earth observation through intelligent satellite coordination"

About

Reinforcement Learning for Autonomous Satellite Constellation Scheduling and Earth Observation Optimization

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages