Skip to content

mickaelandrieu/nutriscore-app

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenFoodFacts Nutriscore predictor

How to get the dataset

As the dataset is too big to be shared on GitHub, you must download it on OpenFoodFacts (products.csv: 4Go).

Local installation

python -m venv dev
source dev/Scripts/activate
pip install -r requirements.txt

Docker installation

Build the image

docker build --tag app:1.0 .

Access the Streamlit application

docker run --publish 8501:8501 -it app:1.0 -m streamlit run src/app.py

Then access http://localhost:8501.

Access the REST API

docker run --publish 8501:8501 -it app:1.0 src/api.py

Then access http://localhost:8501

Everytime you update the project, you must build a new image with a new tag.

Train the model

  1. Download the RAW data on OpenFoodFacts ;
  2. Execute notebooks/eda.ipynb notebook to clean the data ;
  3. Execute notebooks/feature_encoding_and_selection.ipynb notebook to transform the data ;
  4. Execute src/create_folds.py to prepare data for training ;
  5. Execute src/train.py to train the model ;

Evaluate the performance of the model

python src/report.py --fold=1

fold value is in range [0,4]

report (10th of January, 2022)

Test the machine learning model (Without Docker)

Using a Streamlit Web app

streamlit run src/app.py

Using a REST API

python src/api.py

Quality tools

python -m isort src/
python -m black src/
python -m flake8 src/ --count --statistics

LICENSE

This project is provided under the MIT license.

About

A project based on OpenFoodFacts data to build a machine learning model able to predict a nutriscore grade 🥬

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published