A minimalistic implementation of preconditioned Crank-Nicolson MCMC sampling.
minipcn
can be installed using from PyPI using pip
:
pip install minipcn
The basic usage is:
from minipcn import Sampler
import numpy as np
log_prob_fn = ... # Log-probability function - must be vectorized
dims = ... # The number of dimensions
rng = np.random.default_rng(42)
sampler = Sampler(
log_prob_fn=log_prob_fn,
dims=dims,
step_fn="pcn", # Or tpcn
rng=rng,
)
# Generate initial samples
x0 = rng.randn(size=(100, dims)
# Run the sampler
chain, history = sampler.run(x0, n_steps=500)
For a complete example, see the examples
directory.